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Simplified homogeneous, isotropic universe

Two complementary views:

“Galaxy dust” with separate, pointlike galaxies

ρ

Continuum with uniform density ρ

Galaxy positions x⃗i in space

Light can propagate between galaxies

Change ρ(t) over time

Derive dynamical equations
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First step: a static universe à la Einstein 1917

Pairwise distances between galaxies i and j

dij(t) = dij(t0) = const .

Problem: no dynamical mechanism
to stabilize static universe!

(As Einstein 1917 was to find out later)
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http://adsabs.harvard.edu/abs/1917SPAW.......142E


Change in a homogeneous, isotropic universe

What change is possible without disturbing isotropy/homogeneity? Simplest possibility:
Multiply all pairwise distances with the same factor = scale everything up (or down)

Pattern stays the same – overall scale changes over time

App: https://astro-apps.org/ExpansionCubes/

⇒ cosmic expansion with a universal scale factor
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https://astro-apps.org/ExpansionCubes/


Basics of our expanding-universe model

Special family of free-falling galaxies = Hubble flow
(=galaxies whose distances change
only because of cosmic expansion)

Choose cosmic time coordinate t corresponding to local
time of Hubble-flow galaxies

In “snapshot” of universe at some time t = t0,
introduce coordinates x⃗ to label Hubble-flow galaxies
= comoving coordinates, comoving distances

Let physical distance between any two Hubble-flow
galaxies i, j change as dij(t) = a(t) · |x⃗i − x⃗j |,
with a(t) the (universal) cosmic scale factor

For real galaxies, deviations from Hubble-flow motion are
called peculiar velocities
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Hubble-Lemâitre relation

Direct consequence of scale-factor expansion dij(t) = a(t) |x⃗i − x⃗j | ≡ a(t) rij :

Define recession speed vij(t) as change of dij(t) with cosmic time t :

vij(t) ≡
ddij

dt
(t) =

da
dt

(t) · rij =
1

a(t)
da
dt

(t) · a(t) · rij =
1

a(t)
da
dt

(t) · dij(t)

Introduce Hubble parameter H(t) as

H(t) ≡
1

a(t)
da
dt

(t)

and we have derived the Hubble-Lemaître-Relation:

vij(t) = H(t) · dij(t)

— valid for all galaxies i, j, with H(t) and a(t) universal functions!

Notation: from now on, short-hand dots for time derivatives, ȧ ≡ da
dt (t), ä ≡ d2a

dt2 (t) and similar.
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Cosmological redshift as Doppler shift

Cosmological conventions: t0 as the present time, and introducing the

Hubble constant H0 ≡ H(t0) =
ȧ
a

∣∣∣∣∣
t=t0
.

“Local version” of Hubble-Lemaître relation: classical Doppler effect v = cz with

z ≡
λ − λ0

λ0

leads to
v = cz = H0d

where our perspective is Earth-centered: z is the redshift we measure for a galaxy,
d the galaxy’s distance from Earth, v its recession velocity from Earth
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Systematic redshift-distance relation: Hubble-Lemâitre relation

Hubble 1929: “A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae” in PNAS 15(3), p. 168ff.,
for context/predecessors see Trimble 2013
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https://ui.adsabs.harvard.edu/abs/1929PNAS...15..168H/abstract
http://adsabs.harvard.edu/abs/2013arXiv1307.2289T


Hubble relation observed: H0 Key Project 2001

Freedman 2001 et al. (HST Key Project)
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http://adsabs.harvard.edu/abs/2001ApJ...553...47F


Hubble constant values (and tension)

Hubble constant value:

H0 ≈ 70
km/s
Mpc

= 2.3 · 10−18 s−1 =
1

14 Gyr

Conventions for keeping your options open:

H0 = h · 100
km/s
Mpc

= h70 · 70
km/s
Mpc

— and keep the h or h70 as a variable.

Current crisis in cosmology:
Hubble constant tension!

Planck 67.4 km/s/Mpc vs. 73 km/s/Mpc for
Hubble-Lemaître relation measurements

Ezquiaga & Zumalacárregui 2018
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https://ui.adsabs.harvard.edu/abs/2018FrASS...5...44E/abstract


Some further nomenclature

Inverse of the Hubble constant is the Hubble time:

τH ≡
1

H0
≈ 4 · 1017 s = 14 Gyr

Simple interpretation: if v = H0 · d is constant, d/v = 1/H0 is time needed to reach
distance d ⇒ 1/H0 age of the universe. Corresponds to linear expansion a(t) ∼ t .

c/H0 is fundamental length scale, Hubble distance

Standard form for Taylor expansion of a(t) is:

a(t) ≈ a0

[
1 + H0(t − t0) −

1
2

H 2
0 q0(t − t0)2

]
with the (dimensionless) q0 the deceleration parameter (oops!), often a0 = 1.
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Light-travel time in an expanding universe 1

Light travelling from emitting galaxy e to receiving galaxy r ; in snapshot at time t7, divide
connecting line into equal physical distances ∆x
with “free-falling waypoints” (e.g. galaxies):

t1 t2 t3 t4 t5 t6 t7

+∆x
c ·

a(t1)
a(t7)

+∆x
c ·

a(t2)
a(t7)

+∆x
c ·

a(t3)
a(t7)

+∆x
c ·

a(t4)
a(t7)

+∆x
c ·

a(t5)
a(t7)

+∆x
c ·

a(t6)
a(t7)

︸       ︷︷       ︸ ︸       ︷︷       ︸ ︸       ︷︷       ︸ ︸       ︷︷       ︸ ︸       ︷︷       ︸ ︸       ︷︷       ︸
t7 = t1

Equivalence principle: at galaxy i, cosmic time = local time, physical length corresponding
to ∆x is ∆x · a(ti)/a(t7), light moves at speed c, so c∆ti = ∆x · a(ti)/a(t7).

Problem: T ≡ t7 − t1 implicitly depends on the ti ! Re-write each contribution as follows:

∆ti =
∆x
c
·

a(ti)
a(t7)

⇒
∆x

a(t7)
=

c∆ti
a(ti)
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Light-travel time in an expanding universe 2

Add up all contributions
∆x

a(t7)
=

c∆ti
a(ti)

to obtain

c
N∑

i=1

∆ti
a(ti)

=
N ·∆x
a(t7)

=
dcomov

a(t7)

Transition to integrals and infinitesimal sections:

∆ti
a(ti)

≈

ti+1∫
ti

dt
a(t)

Integral version: c

tr∫
te

dt
a(t)

=
dcomov

a(t0)
,

with te (formerly t1) emission time and tr (formerly t7) the reception time
⇒ implicit equation for travel time!

12 28



Cosmological redshift 1

Light leaving distant galaxy at te , arriving at ours t0, comoving distance dcomov fulfills

c

t0∫
te

dt
a(t)

=
dcomov

a(t0)

Now consider second light signal: leaving at te + δte , arriving at t0 + δt0,

dcomov

a(t0)
= c

t0+δt0∫
te+δte

dt
a(t)

Galaxy pair is the same in each instance, so

t0+δt0∫
te+δte

dt
a(t)

−

t0∫
te

dt
a(t)

=
dcomov − dcomov

c · a(t0)
= 0
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Cosmological redshift 2

Re-writing the limits of the integral, using mean-value theorem for integrals:

t0+δt0∫
te+δte

dt
a(t)

−

t0∫
te

dt
a(t)

≈
δt0

a(t0)
−
δte

a(te)

Apply to light waves with wavelength λ = c · δt :
λ

λe

a(te)
=
λ0

a(t0)
⇒ 1 + z =

λ0

λe
=

a(t0)
a(te)

with λe wavelength at emission (local reference frame of distant galaxy),
λ0 wavelength at reception in our own galaxy: cosmological redshift

Light wavelengths change in the same way as distances between Hubble-flow galaxies!
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Caveat: Recession velocity , relative velocity

Caution: Do not naively take recession speeds to be physical speeds!

There is a recipe for comparing velocities in general relativity: parallel transport

Parallel transport from distant Hubble-flow galaxy along light-like geodesic to us gives
relativistic radial velocity vrel , with the cosmological redshift given by

1 + z =

√
1 + vrel/c
1 − vrel/c

(
=

a(t0)
a(te)

)
— corresponds to special-relativistic formula (Bondi k factor)

Details: Bunn and Hogg 2009, Pössel 2020, arXiv:1912.11677
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https://ui.adsabs.harvard.edu/abs/2009AmJPh..77..688B/abstract
https://arxiv.org/abs/1912.11677


Redshift drift

z(tr) =
a(tr)

a(te(tr))
− 1 ⇒

dz
dtr

=
ȧ(tr)

a(te(tr))
−

a(tr)
a2(te(tr))

ȧ(te(tr))
dte
dtr
.

with tr reception time, te emission time, z cosmological redshift, rewritten:

dz
dtr

=
a(tr)

a(te(tr))

[
H(tr) − H(te(tr))

dte
dtr

]
.

Use redshift formula for dte/dtr and re-write in terms of redshifts and H0:

H(te) = H0 · (1 + z) −
dz
dtr

Measuring different z and corresponding ż allows reconstruction of cosmic history!
ż ∼ 10−10 yr−1 at z = 4⇒ ELT (∼ 20 yrs, Liske et al. 2008), or SKA (∼ 12 yrs, Kloeckner
et al. 2015)
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https://ui.adsabs.harvard.edu/abs/2008Msngr.133...10L/abstract
https://ui.adsabs.harvard.edu/abs/2015aska.confE..27K/abstract
https://ui.adsabs.harvard.edu/abs/2015aska.confE..27K/abstract


From kinematics to dynamics

So far, we have considered effects of (any) scale-factor expansion a(t):

Hubble-Lemaître relation

Cosmological redshift

Next: How do densities change? What is the dynamics that determines a(t)?
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How densities change in an expanding universe 1

In the continuum picture: a(t) is universal
⇒ we can study it on smallest scales, where classical (Newtonian) physics is valid

Consider small co-moving cube. Energy conservation reads:

dU = δQ − p dV

Since no heat “enters universe from the outside”, δQ = 0.

Mass density corresponds to energy U = ρc2V . Rewrite as

dρ = −(ρ+ p/c2)
dV
V

Volume changes as

V(t) =
(

a(t)
a(t0)

)3

V0 ⇒
dV
V

= 3
da
a

⇒ dρ = −3(ρ+ p/c2)
da
a
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How densities change in an expanding universe 2

How densities change over time:

ρ̇ = −3(ρ+ p/c2)
ȧ
a

. . . depends on equation of state (EOS), p = p(ρ).

Important EOSs in cosmology:

Matter (“galaxy dust” or dark matter) p = 0 w = 0
Electromagnetic radiation p = ρc2/3 w = 1/3
Dark energy (cosmological constant) p = −ρc2 w = −1

with w defined by p = w · ρc2.
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How densities change in an expanding universe 3

How densities change over time:

dρ = −3(ρ+ p/c2)
da
a

with p = w · ρc2

⇒
dρ
ρ

= −3(1 + w)
da
a

⇒ ρ(t) = ρ(t0) ·
(

a(t)
a(t0)

)−3(1+w)

Simple case: Galaxy dust (matter) or dark matter has, as expected
(constant number of particles plus V ∼ a3):

ρM(t)
ρM(t0)

=

(
a(t)
a(t0)

)−3
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How densities change in an expanding universe 4

For dark energy, 1 + w = 0 together with

ρ(t) = ρ(t0) ·
(

a(t)
a(t0)

)−3(1+w)

leads to constant, time-independent density:

ρ(t) = ρ(t0)

Meshes with original introduction by Einstein
1917 of cosmological constant
(there: to stabilize a static universe)

Einstein 1917 — English translation available
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https://einsteinpapers.press.princeton.edu/vol6-doc/569
https://einsteinpapers.press.princeton.edu/vol6-trans/433


How densities change in an expanding universe 5

More interesting: electromagnetic radiation!

photon gas

photons travelling in straight lines

photon number conserved

ρR(t)
ρR(t0)

=

(
a(t)
a(t0)

)−4

=

(
a(t)
a(t0)

)−3

·

(
a(t)
a(t0)

)−1

which, with single photon energy E = hν = hc/λ, meshes with cosmological redshift,

λ(t) = λ0 ·
a(t)
a(t0)
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Different eras depending on the scale factor
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Different eras depending on the scale factor
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Two caveats:

This says little about evolution — some values of a might not even be reached!

In reality, matter will change — particles might start as dust (non-relativistic) and, at
smaller a, end up at high energies and thus as radiation (relativistic particles)
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Cosmological dynamics: what does a(t) depend on?

Simplified form of Einstein’s equations for sphere of
free-fall particles = Hubble-flow galaxies:

V̈
V

∣∣∣∣∣∣
t=0

= −4πG ·
[
ρ+

3p
c2

]
with ρ(t) the universe’s matter density; contains
energy contributions as per E = mc2; general
relativity adds pressure term to Newtonian description

density ρ
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Second-order Friedmann equation

Spherical volume: V ∼ d(t)3, so that

V̈
V

=
1

d3(t)
·

d2(d3)

dt2
= 3

d̈
d

Since d(t) = a(t) · rcomov :

ä
a
= −

4πG
3

[
ρ+

3p
c2

]
Second-order Friedmann equation

density ρ
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Except for pressure term, this is the Newtonian result!

test
galaxy

0

r(t)

Derivation for how distance r(t) for other galaxy, with our own
galaxy at the origin, changes over time:

Newton’s shell argument: only inner mass contributes,
as if concentrated at r = 0:

r̈ = −
GM
r2
.

M = V · ρ (Newtonian)

V = 4/3 · π · r(t)3

r(t) = a(t)/a(t0) · r0

Specific r0 and a(t0) drop out,

ä(t)
a(t)

= −
4πG

3
ρ
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First-order Friedmann equation

Substituting our density equation (from small-scale energy conservation),

ρ̇ = −3(ρ+ p/c2)
ȧ
a

allows second-order Friedmann equation to be integrated, giving

first(-order) Friedmann equation:

ȧ2 + Kc2

a2
=

8πG
3
ρ

where K is an integration constant.

Separate K into sign k and magnitude 1/R2
0 : K = k/R2

0 , so that k = 0,−1,+1.
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